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ABSTRACT 

Integral equations with an even displacement kernel (which depends only on the 
difference of the two variables multiplied by a parameter) appear frequently in several 
applications, e.g. neutron transport theory, electrodynamics and polymer physics. 
&cause of the large range of patameter values of interest, each problem has often led 
to a separate technique of solution. In this paper, a technique is presented which covers 
all parameter values. It applies to arbitrary displacement kernels and uses an expansion 
in Legendre polynomials to Rive a rapidly converging numerical solution. For small and 
large parameter values the behaviour of the eigenvalues is theoretically investigated and 
numerically illustrated. The computational effort involved is relatively very small. 

1. I~~DU~TION 

The paper discusses a numerical procedure for the determination of the eigen- 
values and eigenfunctions of an arbitrary integral equation of the displacement 

(l-1) 

where K(z) is square integrable in (0,2.r) and s is a parameter. Such equations 
arise in many fields of mathematical physics as well as in purely mathematical 
contexts. In transport theory [K(z) = J’r exp(--zt) dr/t], the neutron flux in slabs 
and spheres [l-3] is described by an equation of this type. Other fields of application 
are the theory of signal transmission [4], where K(z) = sin z/z, and the computation 
of the resistance of a plasma slab between juxtaposed disk electrodes [5,6] where 
K(z) = Jr dt cos zr/(l + exp t). In polymer physics, the determination of the 
intrinsic viscosity and friction constant of macromolecules in solution [7,8] leads 
to equations with K(z) = z-6, 0 < 6 < 1. Several other kernels are discussed in 
purely mathematical papers [9-121. 

84 
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The numerical methods described in the literature were usually developed only 
for the solution of special equations of type (1.1). Two of them should be mentioned 
here, (a) Legendre expansion of the unknown function [2, 5,6] and (b) solution 
of (1.1) in the Fourier representation. The “&method” of Asaoka [l] belongs to 
both classes. After application of the Fourier transformation, the kernel of the 
resultant equation is expanded in spherical Bessel functions. But this is related to 
the Legendre expansion of the original kernel. Roark and Wing [lo] have used the 
Fourier transform technique to obtain a general method for the solution of (1.1). 

Here we shall propose a method which may likewise be applied to any equation 
of type (1.1). It uses an expansion of the unknown function in an infinite series of 
Legendre polynomials. Numerical solutions are obtained by truncating the 
resultant system of algebraic equations at a reasonable order. Although the 
principle of this method is old [13], it does not seem to have been investigated in 
detail in connection with arbitrary integral equations of the displacement 
type. 

It will be shown that several properties of the matrix elements and eigenvalues 
are independent of the actual equation under consideration. Furthermore, we shall 
find that the Legendre expansion is a powerful tool for the numerical solution of 
(l.l), because (a) the analytical effort involved is relatively small and (b) the 
resultant system of algebraic equations can be truncated at a low order. This 
method converges much faster than that described in [lo], thus making earlier 
truncation possible, and it is applicable with far fewer restrictions. Theoretical 
considerations and numerical examples confirm this observation. A great portion 
of the numerical results reported here were obtained by using 4 x 4 or lower 
matrices. 

2. LEGENDRE EXPANSION 

Our main interest lies in the construction of an algorithm suitable for the 
numerical solution of (1.1). Therefore, no great effort is made to find the minimal 
conditions under which our results will hold. 

We assume in (1.1) that 0 < s < co (in most cases the method described here 
applies also to - co < s < 0) and that K(z) is real and in L,(O, 2s) where &(a, b) 
is the space of functions which are square integrable in (a, b). It follows from the 
standard theory of integral equations [13, 141 that 

and consequently, (1 .l) has a discrete spectrum of eigenvalues and the cor- 
responding eigenfunctions are in L,(- 1, 1) [and thus in &(- 1, l)]. 
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Under these conditions we may expand the solution of (1.1) in an infinite series 
of Legendre polynomials P,(x) 

cp(x) - jfo (2m + 1) xzmw9 (2.1) 

where we have used the sign N to state that (2.1) converges in the mean, i.e., for 
almost all s and x. That is 

?(x) - 5 (2m + 1) X,,J’,(x) 2 dx = 0. 
?>I=0 1 

Due to the orthogonality of the Legendre polynomials, we get from (2.1) and 
(l.l), when h # 0, 

2X, = j-’ q~(x)P,(x)dx 
-1 

- A-’ s’, dx j;I dyK(sI x - y I) V(Y) pwz(x), - m = 0, 1,2,... . 

Substituting for q~( y) the expansion (2.1) and interchanging the sum with the 
integrals, which is permitted for almost all s under the conditions stated at the 
beginning of this section, we obtain 

AX, = 2 f (2n + 1) Ttn,n(S)& 
?2=0 

with the matrix elements 

T,,,(s) = ; I’, dx I’, & WI x - Y I> em PA% m,n=0,1,2 ,... 

From the latter formula we see that there exists the representation 

Jw x - Y I) - my nfo (h + 1)(2n + 1) ~m,n(s) em Pn(Yh 

All these manipulations are permitted due to the following theorem: 

(2.3) 

(2.4) 

(2.5) 

THEOREM 2.1. Let 0 < s < 03 and K(z) E L,(O, 2s). If h and v(x) are solutions 
of (l.l), then A is also a solution of (2.3) and F(X) is approximated in the mean by 
(2.1). Conversely, if h and the sequence (X,) are solutions of (2.3), then h is also 
a solution of (1 .l) and pi(x) as defined by (2.1) converges in the mean to the 
corresponding eigenfunction of (1.1). 
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This theorem is given in somewhat more abstract form in [13] and part of it 
appears explicitly in [lo]. For details, we refer to [lo, 13, 141 and to the literature 
cited there. 

An approximate solution of (1 .l) is obtained by truncating (2.3) at a certain 
order N 

&X,N = 2 2 (2n + 1) r?&s) X,N. (2.6) 
?I=0 

The eigenfunctions of (2.1) are then approximated by 

TN@) = ,to (2m + l) XmNPdx)* (2.7) 

The justification of this approximation requires another theorem, which again 
appears in somewhat more abstract form in [13]. 

THEOREM 2.2. Suppose 0 < s < 00 and K(z) E L,(O, 2s). Then AN and the 
sequence {XmN}, which are the solution of (2.6), converge strongly to the solution of 
(2.3), A and the sequence {X,,,}, respectively, as N + 00. 

From the practicle point of view, two items are now left to be demonstrated, 
(a) that there exists a simple way to evaluate T,,,(s) for arbitrary parameter values 
and indices and (b) that the truncation order N in (2.6) can be chosen relatively 
small. 

3. THE MATRIX ELEMENTS 

The evaluation of (2.4) is facilitated by the fact that one of the integrations can 
be carried out independentry of the kernel of (1 .l). Since K(s I x - y I) is by 
definition an even function of x - y, we can apply the Fourier cosine integral 
theorem 

K(sl x - y I) = ; Irn (3.1) --m 
dt 1;’ dw K(w) cos s(x - y) t cos tw. 

The w integration runs, according to the suppositions in Theorem 2.1, only over 
(0,2s) thus securing the existence of (3.1) for almost all s, X, and y. Putting (3.1) 
into (2.4) and substituting z/2s for t and 2sq for w, we get 

T,,,(S) = & /:a dz JI dq 11, dx ,;, dy K(2sq) ~0s zq 
(3.2) . , 

* P,(x) P,(Y) (cos 7 cos~+sin~sin~ 2)9 m, n = 2 2 0, 1,2 ,... . 
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Application of [15, Sec. 3.321 

J“ P,(X) exp ($) dx = 2i” j,,, ($), 
-1 

m = 0, 1,2 ,..., (3.3) 

where j&) are the spherical Bessel functions 

h(x) = (-- lPjm(--x) = (7+Y Jm+l~2(x), (3.4) 

leads to 

I I 
1 

~m,n(s) = 
Qm.n(d WW 4, m + n even, 

OP 
(3.5) 

m i-n odd. 

The function 

(3.6) 

depends in no way on the actual equation to be solved and can be determined 
once for ever. It is also worth noticing that Q,&q) is independent of the parameter 
s. In addition, it will be necessary to consider only those values of m and n for which 
m + n is even and this will be understood throughout the paper. This implies that 
Q,&q) is real, as desired. 

The integral (3.6) is investigated in detail in another paper [16]. Those properties 
of Q,,,,(q), which are needed here, are listed in Appendix I. 

It should be noted that the transformation from (2.4) to (3.5), with Q given by 
(A-l), can easily be performed, without the need of the Fourier transformation, 
by the substitution 

x - y = 2q, x + y = 22. (3.7) 

The reason for the use of (3.1) is that it seems to be difficult to obtain (A-4) and 
(A-5) if (3.7) is taken. On the other hand, in the Fourier representation, (A-4) and 
(A-5) are verified in a simple way. These identities are essential for the derivation 
of many other properties of Q. 

The transformation from (2.4) to (3.5) has still other interesting consequences. 
For example, we get for Schmidt’s bounds on the eigenvalues 

A2 < f, dx /‘, dy K2(sI x - y I) = 8 s: (1 - q) K2(2sq) dq. 

It follows from (3.2) that the matrix elements vanish for m + n odd because 
P,,(x) is either even or odd. Consequently, (2.3) and (2.6) degenerate in two 
uncoupled systems. This leads to the following well known [lo] lemma: 
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LEMMA 3.1. Any eigenfunction of (1.1) can be assumed to be an even or an odd 
function. 

The even eigenfunctions v+(x) are thus approximated by 

m+(x) = f. (4m + 1) C22mW (3.8) 

and the associated eigenvalues hh satisfy 

A&X,“, = 2 c” (4n + 1) T2m,2&) x2, m = 0, 1, 2 ,... . (3.9 
n=o 

The odd eigenfunctions and the corresponding eigenvalues are similarly approxi- 
mated by replacing 2m and 2n by 2m + 1 and 2n + 1 in the above formulae. 

Multiplication of (A-4) by K(2sq) and integration over q in (0, 1) gives a linear 
relation among four matrix elements 

On + l)[Tm+2,nW - Tm,,(s)l = (b + 3)W,+r,&s) - ~m+~.n+~(S)le (3.10) 

This relation again is independent of the actual equation to be solved. Furthermore, 
since em,%(q) is symmetric with respect to the indices, so also is T,,,(s). Thus, all 
matrix elements can be determined from (3.10) if one knows those with n = 0 
and n = m. 

The truncated equation (2.6) requires the determination of (N + 1)2 matrix 
elements. Looking on the special form of Q, we see that only 3(N + 1)/2 
integrations are actually necessary. In addition, they can be performed recursively, 
because the Q’s are polynomials. 

Experience has shown that (3.10) can be of little numerical value if the matrix 
elements are of the same order of magnitude. It is then better to use (3.10) only for 
the determination of the analytical expression of a matrix element and to extract 
from that the numerical value for a given S. 

Finally, we mention a differential equation which can also be used for the 
recurrant determination of the matrix elements. Multiplication of (A-5) by 
K(2sq) and integration over q in (0, 1) gives 

(2n + 3) Tm-D&+&) + 3 -g P-n&) - ~m.n+z(~)l 

= (n - m - 1) T,,,(s) + (m + n + 4) Tm.n+2(S). (3.11) 

There exist six equations of type (3.11) corresponding to the six possible con- 
figurations of three neighbouring matrix elements with m + n even. The solutions 
of these equations contain an integral over previously calculated matrix elements. 
This is equivalent to the repeated integrations which appear implicitly in (3.5). 
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4. SMALL PARAMETER VALUES 

The determination of the matrix elements can be further simplified if the kernel 
has the series expansion 

K(2sq) = f a,sUqO = c -II (a + l)(u + 2) 
2 bow”, 

0=0 0=0 
(4.1) 

which converges in a certain domain / s / < R around the s origin (q is always 
Gl!). Trivially, it then converges absolutely and uniformly in this domain. 
Substitution of (4.1) into (3.5) and interchange of sum and integral yields 

#pl = (0 + l)(a + 2) l 
2 I q”Qm.n(q) dq 

0 
(4.3) 

is given by (A-3). Thus, knowing the expansion of K(2sq), we can immediately 
write down the expansion of all matrix elements because the expression for &Y’s” 
is of great simplicity and depends again in no way on the actual equation to be 
solved. 

LEMMA 4.1. Suppose the expansion (4.1) conaerges for / s 1 -=c R. Then (4.2), 
the expansion of each matrix element, converges absolutely and uniformly for 
IsI <R. 

From (A-3), 1 #F*” 1 < 1 and for u >, m + n, the sign of #‘*” does not depend on 
0. Therefore the expansion (4.1) of the kernel is a majorant to all matrix elements 
(4.2). 

Formula (4.2) may even be valid if the kernel has no series expansion. An 
example is the neutron transport kernel K(2sq) = J;” du exp(--2squ)/v [l-3]. For 
s = 0, this kernel has a logarithmic singularity and so has also the lowest matrix 
element T,.,(s). But all the other elements are regular at s = 0. Knowing the series 
expansions of T,,,(s) and T2,0(s), which for this kernel are explicitly given in [l], 
one may in the same way as described above establish the form and the convergence 
of all other matrix elements. 

LEMMA 4.2. Suppose the series expansions of T,,,,,(s) and T,+I,,+l(s) converge 
for 1 s 1 < R. Then the expansions of all matrix elements T,,,(s) with k + I > 2.m 
converge absolutely and uniformly for ( s 1 < R. 
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This lemma follows immediately from the fact that 

I *r+k*m-k I < I 4?” I9 k = 1, 2, 3 ,..., m. 

Another conclusion can still be made from Lemma 4.1. The coefficients of the 
characteristic polynomial associated with (3.9) are obtained by a finite number 
of multiplications and additions. Thus we have the following lemma: 

LEMMA 4.3. Suppose the expansion (4.1) converges for 1 s 1 < R. Then the 
expansions of the coeficients of the characteristic polynomial of (3.9) converge 
absolutely and un$ormly,for I s I < R. The same statement holds in the odd case. 

The above results permit us to study the behaviour of the eigenvalues in the 
neighbourhood of the s origin. Substitution of (4.2) into (3.9) and use of (A-6) and 
(A-7) shows that the determinantal equation of (3.9) takes on the following form 
for small values of s: 

2b, + O(s) - x O(s) w31 . . . o(s2M-l) 

O(s) O(s) - h O(s) 
. . . qs2M-3) 

O(s3) O(s) O(s) - x -** O(s’M-5) 

m’ > 
M-1 +f-3) O&f-5) . . . O($ _ jj 

It follows that 

= 0. (4.4) 

xi.0 = 2b, + O(s), %f.k = o(s), k = 1, 2, 3 ,..., A4. (4.5) 

This result is obviously true for M = 0. For M > 0, we prove (4.5) by induction. 
When increasing M by one, the characteristic polynomial associated with (4.4) is 
multiplied by h - O(s) and (4.5) follows at once. In the same way we obtain for 
the eigenvalues belonging to the odd eigenfunctions 

&f.k = O(s), k = 0, 1, 2 ,..., M. (4.6) 

Thus, all eigenvalues, except the extreme one, are proportional to s, but the 
proportion constants depends on the truncation order M. 

Because of Theorems 2.1 and 2.2, we can now pass to the limit M + co in (4.5) 
and (4.6) and obtain the following theorem: 

THEOREM 4.1. Suppose K(2sq) has the expansion (4.1). Then, for small s, the 
eigenvalues of (1.1) behave like 

h, = 2bo + O(s), hk = O(s), k = 1, 2, 3 ,... . (4.7) 
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Finally, we shall treat a special case of (4.1), which appears frequently in the 
applications [4, 5, 61. We suppose that the kernel of (l.l), with respect to s, is an 
even function and has the expansion 

K(2sq) = f ae+q2Q = o; (0 + 1w + 1)b2$20420. (4.8) 
-34 

Substitution of (4.8) into (3.9) and use of (A-6) leads for small s to the following 
determinantal equation: 

O(P) - h O(s2) O(s4) *** O(ef) 
O(s”) O(s4) - h O(P) *** 0(++2) 
O(s41 O(s6> O(P) - h *** O(F+y = 0. 

0(&f) &t+2) o&4+4) . . . o&M) _ x 

For the eigenvalues of (3.9), we then get 

2Ac+1 

A+ M,k = ,c, cks2” + O(S~+~), k = 0, I,2 ,..., M. 

Similarly, in the odd case, we have 

2M+1 
x- N,k = .c, d;ns2Y+2 + O(S~+~), k = 0, 1, 2 ,..., M. 

(4-9) 

(4.10) 

(4.11) 

It is an important fact that the coefficients dyfk do not depend on the truncation 
order M, and so the series expansion of h& differs from the expansion of the 
corresponding exact eigenvalue of (1 .l) by a quantity of the order O(++el). 
This can again be proven by induction. When increasing the truncation order in 
(4.9) from M to M + 1, Eq. (A-6) ensures that the coefficient of Ak in the charac- 
teristic polynomial is influenced only by quantities of order O(S~‘-~+~~*+M~+~~) 
[O(S~‘-~~+~*+~M+~) in the odd case]. We summarize these results by 

THEQREM 4.2. Suppose K(2sq) has the expansion (4.8). Then, for small s, the 
eigenvalues of (2.6) behave like 

N+l 

x N,k = “5 d,,,ks2” + o(Sw*), k = 0, 1, 2 ,..., N. (4.12) 

The coeficients 4.k vanish for v < k and for k < N + 1, they are equal to the 
expansion coeficients of the corresponding eigenvalues of (1.1). 
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The coefficients dv,k can easily be calculated by constructing the characteristic 
polynomial from (4.12) and comparing the result with the polynomial obtained 
from (2.6). 

5. LARGE PARAMETER VALUES 

To study the behaviour of the eigenvalues of (2.6) for large values of the param- 
eter, we change (3.5) by the substitution z = 2sq 

and assume 

z”K(z) dz = C,,, , 

where C,,, is a constant. From (A-2) we have then 

en,., (+) = & - 5 + o(s-2). 

(5.1) 

(5.2) 

Putting (5.1), (5.2), and (5.3) into (3.9), we have to solve an equation of the form 

det [ o(s-~) - (h - %) a,,,] = 0. 

Subtracting the (k + l>th from the k-th row and adding the Z-th to the (I + I)-th 
column, we obtain an equation where the O(S-~) dependence is removed except 
for the last row: 

2 + O(s-3) - A O(s-3) --- O(s-3) 

O(s-3) 2+ O(s-3) - h . . . O(s-7 
= 0. 

I 
O(s-7 O(s-3) -a- ++ O(s-3) - x w-9 

O(s-2) O(s-2) -a- O(s-2) : + O(s-2) - h 
I 

Performing the same manipulations in the odd case, we obtain 

hv., = + + O(.+j, k = 0, 1, 2 ,..., N - 2, 

ANJ = + + O(s-2), I= N- l,N. 
(5.4) 
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From (5.2) and (5.4) we conclude that all eigenvalues of (2.6) approach the same 
limit 

lim sh = 2 I m s-xc K(z) dz. 
0 

(5.5) 

This result remains valid under somewhat fewer restrictions. Passing to the limit 
N-+co,weget 

THEOREM 5.1. Suppose, for k = 1, 2, 3 ,... 

vanishes with a higher order in s-l than for k = 0. Then, as the parameter s tends 
to infinity, all eigenvalues of (1.1) approach the same limit (5.5). 

It should be noted that Theorem 5.1 is a generalization of a well known result 
of Bellman and Latter [9]. 

6. NUMERICAL EXAMPLES 

The numerical examples given in this section are each chosen to demonstrate 
special features of the method described in this paper. To provide a comparison, 
we consider only kernels where it is possible to derive the results also from other 
sources. 

Most of the calculations were performed using 4 x 4 or lower matrices. The 
eigenvalue equations of fourth degree were solved by a simple, previously 
developed, procedure [17]. Generally, the determination in double precision of 
the eigenvalues belonging to one parameter value required one second on an IBM 
7090 computer. 

Example 1. The solution of 

b(x) = s’, I x - Y I do) & 

can be obtained in a simple way [12]. Differentiation gives 

The eigenvalues belonging to the odd eigenfunctions are 

h 2n+l = -[8/7?(~ + l)“] 
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and those belonging to the even eigenfunctions are determined from 

,Jztan,Jz+ 1 = 0. 

This equation has one positive and infinitely many negative roots. 

TABLE 1 

Eigenvalues of K(z) = z 

0 

1.33 

1 

2 

1.38959 
-0.247 

3 

4 6 Exact 

1.3896331 1.3896331 1.3896331 
-0.25535 -0.2553963 -0.2553964 

-0.043 -0.015 -0.0528 -0.0534 -0.023 

5 7 Exact 

Al -0.80 -0.81056 -0.8105695 -0.8105695 -0.8105695 
Aa -0.078 -0.08971 -0.O9oO6O2 -0.0900633 
A, -0.023 -0.0314 -0.0324 
x7 -0.009 -0.017 

Numerical examples up to the truncation order N = 7 are given in Table I. 
We see that already with 3 x 3 matrices X, and A, can be determined with seven 
exact digits. When using 4 x 4 matrices, A, and As coincide with the correct result 
up to five digits and Aa and A5 differ by at most unity in the second digit. 

Example 2. Similar good results are obtained from 

hw = 1’ exp(---sl x - Y I) V(Y) 45 
-1 

where the analytical solution can be obtained in the same way as in Example 1 
[3]. The eigenvalues are determined from 

A, = 2s/(s2 + wn2) 

and the eigenfrequencies from 

W*n tan W2n - s = 0, 

s tan u2n+l + w$,+~ = 0. 
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Table II compares our results with the exact ones. Whenever discrepancies occur 
between the two results, the exact digits differing from our approximation are 
given in parenthesis. If there are no parenthesis, both results coincide in all digits. 
We again emphasize that all results in Table II are obtained using 4 x 4 matrices. 

For small s, the eigenvalues show the behaviour indicated in (4.7). It is interesting 
that A4 and A, are proportional to s up to 1 s 1 - 1.0, while for A1 , (4.7) holds only 
for I s I < 0.1. That is, the higher terms in the expansion of A play an important 
role only for the first few eigenvalues. 

For large positive s, all eigenvalues tend to 2/s, as expected from Theorem 5.1. 
For large negative s, A0 and X1 behave like F exp(-2s)/2s, while all other eigen- 
values tend to zero. 

Example 3. Consider an equation with an oscillating kernel 

w4 = I’, ~0s s(x - Y) dr) dy. (6.1) 

The eigenvalues are given by 

AJ = 1 + jrJ@), A1 = 1 - j,(2s). 

The determination of the matrix elements here is simple if one looks at the definition 
of Q,,,(q), Eq. (3.6). It follows that 

zL&> = ~“-“%h)h2(~)* 

Since the cos-kernel does not fullill the requirements of Theorem 5.1, we can 
expect good results only for small parameter values. Table III shows the size of the 
M x M matrices which have to be used to obtain A0 and A1 exact to seven digits. 
Since (6.1) has a degenerate kernel, the eigenvalues are simply obtained by summing 
up the diagonal terms of the respective matrices. The values of AZ and As in our 
approximation (obtained from 4 x 4 matrices) are also given to provide a 
numerical proof of the accuracy of the method. These values should go to zero 
for infinite truncation order. The negative integers following the A, and A, values 
denote powers of 10. 

The numerical results in Table III show for small s the behaviour predicted by 
Theorem 4.2. Up to ) s ) - 0.6, A1 is proportional to 9. We further note explicitly 
that because of the oscillatory behaviour of the kernel, the eigenvalue h, (belonging 
to the even eigenfunction) can be smaller than A1 . 

Example 4. Finally, consider the equation 

hC4 = J“ J&(x - ~11 dr) dy. 
-1 
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TABLE III 

Eigenvalues of K(z) = cos z 

0.2 2 1.9735459 0.0264541 0 0 
0.4 2 1.8966951 0.1033049 0 0 
0.6 3 1.7766992 0.2233008 0 0 
0.8 3 1.6247335 0.3752665 0 0 
1.0 3 1.4546487 0.5453513 0 0 
1.5 4 1.0470400 0.9529600 0.13-10 OH-10 
2.0 4 0.8107994 1.1892006 0.19- 7 -0.40- 8 
2.5 5 0.8082151 1.1917849 -0.33- 7 -0.87- 8 
3.0 5 0.9534308 1.0465692 -0.54- 7 -0.48- 7 
3.5 5 1.0938552 0.9061448 -0.23- 6 -O.lO- 6 
4.0 6 1.1236698 0.8763302 -0.48- 6 -0.19- 6 
4.5 6 1.0457909 0.9542091 0.78- 7 0.35- 6 
5.0 6 0.9455979 1.0544021 -0.92- 6 -O.Sl- 6 
6.0 7 0.9552856 1.0447144 -0.23- 6 -0.14- 5 
7.0 8 1.0707577 0.9292423 0.39- 6 -0.58- 7 
8.0 8 0.9820060 1.0179940 -0.27- 6 -0.46- 6 
9.0 9 0.9582785 1.0417215 -0.72- 7 -0.65- 6 

10.0 10 1.0456473 0.9543527 -0.18- 6 0.54- 8 

TABLE IV 

Eigenvalues of K(z) = J,(z) 

0.2 1.9867375 0.0132536 2 
0.6 1.8855726 0.1137001 2 
1.0 1.7072416 0.2870747 3 
1.5 1.4340351 0.5370153 3 
2.0 1.1699387 0.7411874 4 
2.5 0.9544810 0.8468611 4 
3.0 0.7964261 0.8526998 4 
4.0 0.6585164 0.7097817 5 
5.0 0.6341317 0.5765411 6 
6.0 0.541647s 0.553331s 7 
8.0 0.4809063 0.4546344 8 

0.8897244 -5 0.2540810 -8 
0.7254375 -3 0.1858757 -5 
0.5643431 -2 0.4010888 -4 
0.2848326 (4)-l 0.4622624 (3)-3 
0.862036 (0)-l 0.262861 (O)-2 
0.188333 (24) 0.100726 (4)-l 
0.32020 (14) 0.29572 (1)-l 
0.4821 (17) 0.1384 
0.415 (4) 0.313 (2) 
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The first four eigenvalues are given in Table IV. For &, and h, , the results are 
calculated by the ordinary iterative procedure using the Rayleigh quotient. M is 
again the size of the matrices which must be used to obtain the stated accuracy. 
For he and h3, the results are computed from 4 x 4 matrices and whenever these 
deviate from those obtained from 3 x 3 matrices, the differing final digits are 
given in parenthesis. Since the kernel is an oscillating function, the curves of h(s) 
also oscillate and consequently, for some ranges of s, A1 > &, where /\o is again 
defined as the extreme eigenvalue belonging to an even eigenfunction. 

For small s, the numerical values given in Table IV show the behaviour (4.12). 
More explicitly, h, is proportional to s2 up to ] s I - 0.6, while A3 is proportional 
to s6 even as far as ] s ] - 2.0. The three digit results for h, and h, of Roark and 
Wing [lo] coincide with our values. 

7. FINAL REMARKS 

It was shown in the previous sections that the Legendre expansion is a powerful 
tool for the numerical solution of equations of type (1 .l). Naturally, this method 
may be applied also to more general equations. A simple alteration is to assume 
in (1.1) arbitrary, but finite, integral boundaries. Infinite boundaries are explicitly 
excluded because in this case the kernel is not any more square integrable. The 
connection to the previous formalism is obtained by a simple substitution. If hk* 
are the eigenvalues, ylc*(n the eigenfunctions (k = 0, 1,2,...) and s* the parameter 
of 

(7.1) 

and &I&X) and s are the corresponding quantities of (1.1) then 

A,* = P&z, s = ps*, 

9)k*(o = P)kKe - 4/p - 11, 
(7.2) 

where p = (b - 412. 
Another possible extension is to assume that the kernel of (1.1) contains two 

parameters and depends on the argument itself and not on its modulus: 

(7.3) 

In several cases, depending on the kernel under consideration, the degeneration 
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of the corresponding eigenvalue matrix in two uncoupled systems will be lost. 
All properties of Q, which are needed for this case, may be found in [16]. 

It is also possible, but more complicated, to use other orthogonal polynomials. 
They should have the property of falling into a class of even and a class of odd 
functions. This is achieved if the weight function associated with the polynomials 
is an even function, provided the boundaries of the integral equation are symmetric 
with respect to the origin [18]. Among the Jacobi polynomials the Gegenbauer 
polynomials have this property. 

A polynomial expansion can also be applied to other than displacement integral 
equations. One of the main features of such equations is that one of the integrations 
involved in the determination of the matrix elements can be carried out 
independently of the actual kernel under consideration. The same applies, at least 
in principle, to arbitrary integral equations. Another advantage of the method 
described here is that one can write down the series expansion of all matrix elements 
if one knows the expansion of the kernel. This holds equally, again at least in 
principle, for arbitrary integral equations where it is possible to expand the kernel 
in powers of the parameter. 

Finally, we mention that the Legendre expansion can be applied with equal 
success to inhomogeneous equations of type (1 .l). The only change is the 
appearance of inhomogeneous terms in (2.3), (2.6), and (3.9) respectively, which 
are the Fourier-Legendre coefficients of the inhomogeneous term of the original 
equation. 

From the numerical point of view, some caution should be observed. A 
polynomial expansion as described here converges “in the mean.” That is, it 
converges everywhere to the exact solution except in a set of points of measure 
zero [see Eq. (2.2)]. Therefore, at some points, the solution (2.1) may differ from 
the exact one. On the other hand, in physical applications, this feature is not 
usually encountered. 

The recurrance formula (3.10) is numerically unstable and should thus be used 
only for the determination of the analytical expression of a matrix element rather 
than for the numerical computation. Fortunately, for small parameter values, 
the elements can be calculated from their series expansion (4.2). In the future it is 
intended that a similar simple general expression for large parameter values will 
be found. 

APPENDIX I 

The integral (3.6) is evaluated in detail in [16]. For 0 < q < 1, Q is a special 
polynomial which is symmetric with respect to the indices, as can be seen from 
(3.6). For q > 1, Q vanishes identically. This is equivalent to the finite integration 
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over w in (3.1). Several other properties of Q are listed below. As usual, empty 
products are to be replaced by unity. 

I s l-29 

Qm.&) = 
em PTl(x + w dx, O<q<l, 

-1 (A-1) 

0, l<q<co; 

m+n+1 
Q,&q) = c cranq’, 

V=O 
cr., = a, 

cy = vi~~~~j! ij (m + n + 1 + v - 2~)(l m - n 1 + v - 24, 

v = 1,2, 3 ,..., m + n + 1; (A-2) 

(u + l)(u + 2) l 
2 I q”Qm.n(d 4 

0 

‘~‘(u+3-2p)~(u+2-2p) 
= (-l)” 5 (u + 1 + 2p) Cl (u + 2 + 2p) ’ u ’ -l; (A-3) 

(21 + l)[Qm+2.,,(q) - Q,,Adl = (2m + 3)[Qm+1.n-dd - Qm+~,n+ddl; (A-4 

(h + 3) Qm-l.n+dq) - dWdtQw&) - Qm.n+ztdl 
= (n - m) Q+(q) + (m + n + 3) Qm.n+&>; 

(A-5) 

I 1 q”“Qm.n(q) dq = 0, K = 0, 1, 2,..., m+n-2 2 , m-l-n>,2 (A-6) 
0 

I 1 q7Q,,,.n(q) 4 = 0, 7 = (41, L, 1 m-n 1 - 2, 1 m -n 1 > 2. (A-7) 
0 

APPENDIX 11 

For convenience, the explicit expressions for Q&q) and Qxso(q) are listed up 
to k = 7. 

Qo.oW = 20 - d 
Qdd = X6 - q + WI 
Qs.&> = 2(& - q + 24’ - 31’) 
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Q,,,(q) = 2(3 - q + 4q3 - 6q5 + Yq’) 
Q&q) = 2($ - q + yq” - 18q5 + 2Oq’ - z8qs) 

Q&q) = 2(& - q + log3 - 42q5 + 8Oq'- 70qs + Wql"') 

Q&q) = 2(& - q + 14q3 - 84q5 + 24Oq' - 35Oq' + 252q1' - wql’) 

Q’,‘(q) = 2(& - q + B3aq3 - 3-Bq5 + 6oOq’ - vqs + 1512q1’ - 924q13 

+ I+Mq15) 

Q&d = 3-q + 3q2 - 2q3) 

Q&q) = 2(-q + log2 - 30q3 + 35q4 - 14q5) 

Q&q) = 2(-q + 21q2 - 140q3 + 420q4 - 630q5 + 462$ - 132q') 
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